The Box Tube MAC-11

Bolt and receiver modifications

әр!̣м шugz / чб!̣ umst
дY6!s леәy

Practical Scrap Metal Small Arms Vol. 5

Introduction

The information and plans contained herein expand upon adding additional bolt weight to the original Box Tube MAC-11 design described in Vol. 2 as well as straight forward modifications to the receiver allowing alternative bolts of greater mass to be incorporated without changing the original receiver material specifications.

For legal purposes, the demonstration prototype shown in both part $1 \& 2$ of this publication was built as a legal non-firing dummy replica. It's dummy barrel is completely destroyed, blocked and permanently welded in place as well as it's bolt having no provisions for a firing pin. This document is for academic study purposes only.

Tungsten inserts

Tungsten is a very dense material, approximately 1.7 times more so than lead. A tungsten weight will weigh nearly twice as much as a lead weight of the same size making it an ideal material to use for bolt inserts. The micro UZI for example uses this method to achieve optimum bolt weight within a very small package. A heavier bolt will also result in a more desirable reduced rate of fire.

A $3 \mathrm{oz}(85 \mathrm{~g})$ tungsten weight measures $9.5 \mathrm{~mm} \times 12 \mathrm{~mm}$. Drilling a $3 / 8$ " (9.5 mm) wide, 48 mm long hole in the bolt piece will allow the insertion of four 3 ounce (85 g each) weights totalling 340 g . When the bolt is cocked all the way back, the hollow middle area of the compressed recoil spring will still allow for 30 mm more material to protrude out of the rear of the bolt. Considering this, a further two more weights can be added contained in a welded on piece of 13mm steel tubing. A larger cocking handle can also serve to hold extra weight, especially if made using successive tubing telescoped over it into which additional tungsten weights can be placed. Using this method one can expect to attach almost 600 g of tungsten. A bolt made in this manor can potentially weigh over 700 g , taking into account the displaced steel. Keep in mind, the original M11-9 bolt weighs only 440 g .

Even without drilling the bolt for inserts and instead relying on a rear portion containing two 3oz weights and a large cocking handle containing another two 3 oz weights, approximately 550 g of overall bolt weight will be achieved. Optionally the recoil spring can also be shortened allowing for a slightly longer bolt with more space to fill with tungsten.

Another simple and highly effective way to attain more weight is to weld on a section of hollow tube on top of the bolt which protrudes through an enlarged cocking handle slot. This tube can be filled with tungsten weights or even enough molten lead to be sufficient. Approximately ten $30 z$ tungsten weights will fit in a $12 \mathrm{~mm} \times 1.5 \mathrm{~mm}$ steel tube the same length as the bolt (5 ") allowing potentially 850 g of extra weight. Serrations can be made into this piece of tubing allowing it to also serve as a cocking handle. Using lead to fill the tube, a sufficient bolt weight of over 600 g will be achieved without any additional inserts. It is important that the recoil spring selected is almost fully compressed when the bolt is cocked back so that the weighted section cannot slam into the top of the lower receiver.

Weld to bolt carrier
Increase bolt handle slot width to 13 mm and continue slot though rear of upper receiver allowing insertion of bolt

Submachine guns and their bolt weights

Submachine gun	Cartridge	Bolt weight
SWD M11	9×19	440 g
STEN MKII	9×19	635 g
PPS43	7.62×25	560 g
PPSH41	7.62×25	590 g
UZI	9×19	680 g
Lusa	9×19	482 g
VZ61	.32 ACP	230 g
Micro UZI	9×19	408 g

All steel bolt method

Though tungsten weights or lead will be preferable and more than sufficient to weight a bolt, an alternative method would be to attach extra mass in the form of two steel plates or a square bar to the bolt. As before, the original cocking handle slot on the receiver is enlarged to allow insertion of the bolt and the handle itself mounted to the side of the receiver instead. An optional housing cover made from a section of square tube will allow for convenient placement of a red-dot or laser sighting system via a Picatinny rail.

Heightened steel bolt inserted into receiver with added cover:

Plans

Full plans from part 1 are included alongside additional modifications. All pages included should be printed out on 8.5×11 US letter paper. Each component template is drawn to scale and can be cut out and glued to their respective thickness of material. Make sure the ruler at the bottom left of each sheet is 2 inches in length. Alternatively, enlarge the plans using a computer program until the ruler is the correct length, then trace the parts needed onto a sheet of paper taped over your computer's screen.

Weighted bolt 2

Bolt carrier

Cut from a 129 mm length of $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ (2 mm wall) steel box tube Cut out lower wall

Insert up to ten 3oz 3/4" tungsten weights ($9.5 \times 12 \mathrm{~mm}$) or fill with molten lead - Thread each end with a 12 mm tap for two 12 mm grub screws

Weighted bolt 3

Mild steel strip - $\mathbf{3 m m}$ thick, 10 mm wide, 129 mm long

Drill $\mathbf{4}$ or $\mathbf{5}$ holes through strip and weld through while ontop of bolt carrier

Two 6 mm steel plates, 12 mm high $\times 15 \mathrm{~mm}$ wide, 148 mm long or single $12 \mathrm{~mm} \times 15 \mathrm{~mm}$ steel bar

Weld or secure assembly together using four or five bolts

Front

2 inches

Left side

Bolt cover

Weld to top of upper receiver - position flush with front
Bottom

Perforate both sides with 6 mm drill holes

. 32 / . 380 / 9x18 magazine

For display purposes only!

Rather than hand winding a magazine spring, a 12 mm wide, 2.5 " long tension spring can be stretched out to form a very long compression spring suitable for use in such a small ID magazine.

Hold both ends using pliers in each hand - stretch out until a consistent compression spring is formed. Snip both ends once complete.

A magazine spring produced in this manor will work reliably providing it is used in $30 \mathrm{~mm} \times 15 \mathrm{~mm}$ tube sizes or smaller.

Follower
Bend from 90 mm long steel strip 10 mm wide $\times 2 \mathrm{~mm}$ thick

Bend lips inwards evenly until both tips retain a cartridge - sand edges smooth

2 inches

Lower receiver

The Box Tube MAC-11 - The Ultimate DIY Machine Pistol

Lower receiver: $30 \mathrm{~mm} \times 50 \mathrm{~mm}$ (2 mm wall) mild steel box section Rear sight \& trigger guard: 14 gauge (2 mm) mild steel sheet
Feed ramp: $1 / 4 "(6 \mathrm{~mm})$ thick steel or aluminum plate

Grip

1" thick wood or plastic

Secure with 15 mm long pin

2 inches

Sten magazine well : $1^{\prime \prime} \times 2$ " ($50 \times 25 \times 1.5 \mathrm{~mm}$) steel box section Catch housing : 16 gauge (1.5 mm) sheet or suitable steel box section Magazine catch : $3 / 8$ " (10 mm) steel or aluminum plate

Bolt carrier

Cut from a 129 mm length of $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ (2 mm wall) steel box tube Cut out lower wall

Mount bolt piece using three 6 mm mild steel bars or weld in place

Bolt piece

Bolt handle
Modifed m10 bolt (grind down upper 5mm)

Alternatively tap bolt carrier to accept an unmodified m 6 bolt
Finished bolt face profile
Cut from a 58 mm length of $5 / 8^{\prime \prime}$ (16 mm)
steel bar stock

- Drill center with 10 mm drill bit until 3 mm deep
- Grind flat with 10 mm drill bit with tip removed using angle grinder
- Bevel edges slightly with $16 \mathrm{~mm}+$ drill bit or dremel

$$
20
$$

rind feeding cuts using angle grinder fitted with 2 mm grinding disc for entire 58 mm length.

Extractor

Bend from 28 mm long strip of 5 mm wide steel (2 mm thick) to profile below

2 inches

Bolt carrier: 20×20 (2 mm wall) mild steel square box section
Bolt piece: $5 / 8$ " (16 mm) round or square mild steel bar stock

Trigger group \& ejector

Cut trigger and sear from 10 mm thick aluminum or steel plate

Trigger

[^0]
For more...

[^0]: 2 inches

